Preliminary communication

Stereospecific synthesis of di- and tri-substituted acids by carbonation of vinylcopper reagents

J.F. NORMANT, G. CAHIEZ, C. CHUIT

Laboratoire de Chimie des Organoéléments, ERA 31, Tour 44, 4 Place Jussieu, 75230 Paris, Cedex 05 (France)

and J. VILLIERAS

Laboratoire de Synthèse Organique, ERA 31, Tour 44, 4 Place Jussieu, 75230 Paris, Cedex 05 (France) (Received May 1st, 1973)

SUMMARY

Vinylcopper compounds obtained by addition of alkylcopper derivatives to terminal alkynes are converted to the corresponding α ethylenic acids stereospecifically in high yields. The influence of ligands in this insertion is emphasized.

Only recently have reports on the insertion of CO_2 into a C-Cu or C-Ag bond appeared¹⁻³. Apart from its synthetic interest, this reaction can be seen as a preliminary coordination of CO_2^4 followed by an insertion which is spontaneous or is induced by a ligand.

We have prepared vinylcopper reagents⁵ stereospecifically and we have tried to transform them into acrylic acids as follows:

 $R-Cu,MgBr_{2} + R'C \equiv CH \xrightarrow{(1) CO_{2}} R \xrightarrow{R} C = C \xrightarrow{COOH} H$

A vinylcopper-magnesium bromide solution, in ether, does not absorb CO_2 . However, in the following example we have studied the influence of various solvents or donor molecules capable of allowing the insertion of CO_2 (Table 1).

EtCu,MgBr₂ + Bu-C=C-H + CO₂ $\xrightarrow{\text{ligand}}_{\text{ether,cosolvent}}$ Et COOH

TABLE 1

Cosolvent	Ligand	Acid yield (%)
THF	2 P(OEt) ₃	36
THF	$2 P(NMe_2)_3$	41
THF	2 PPh ₃	45
N-Methylpyrrolidone		11
HMPT		48
HMPT	$2 P(NMe_2)_3$	60
HMPT	$2 P(OEt)_3$	40
HMPT	$1 P(OEt)_3$	60
HMPT	$1/2 P(OEt)_{a}$	69
HMPT	1/10 P(OEt),	95
	1/10 P(OEt),	0

INFLUENCE OF VARIOUS SOLVENTS AND DONOR MOLECULES ON THE REACTIVITY OF A VINYLCOPPER REAGENT TOWARD CO $_{\rm 2}$

Acetonitrile, pyridine and pyrrolidine are ineffective, and in contrast to carboxylic amides, phosphoric amide enables the reaction to take place. A practically quantitative yield of acid can be obtained with a catalytic amount of $P(OEt)_3$ present, while a greater amount is unfavourable. This seems to indicate that the vinylcopper-2P(OEt)₃ complex is not so suitable as vinylcopper-1P(OEt)₃ for coordination with a CO₂ molecule. The catalytic role of $P(OEt)_3$ could be explained by its separation after the insertion of CO₂. We are studying the mechanism of this reaction.

To make this synthesis general and to prove the stereospecificity of the insertion of CO_2 , we have prepared the following acids:

EtCu,MgBr₂ $\xrightarrow{(1) R-C=C-H}$ $\xrightarrow{(2) CO_2,HMPT,1/10 P(OEt)_3}$ \xrightarrow{Et} C=C \xrightarrow{COOH} H (I) R = Bu (95%) (II) R = Me (96%) (III) R = H (62%)

The stereospecificity is proved by NMR spectroscopy and by comparison with the data from the literature (Table 2).

In acids I, II and III the ethylmethylene group shows a shift of 2.62 ppm (TMS) consistent with the *cis* structure of III. *Cis*- α -olefinic acids are usually obtained by semi-hydrogenation of α -acetylenic acids⁸ and by Favorsky's rearrangement of dihaloketones^{9,11}. The reaction described here is of synthetic value and completes the recently established preparation of *trans*-olefinic acids⁵:

 $R-Cu,MgBr_2 + HC = C-COOH \rightarrow \frac{R}{H} C = C \begin{pmatrix} H \\ COOH \end{pmatrix}$

C54

PRELIMINARY COMMUNICATION

TABLE 2

PHYSICAL CONSTANTS OF ACIDS I, II AND III

Acid	B.p. (°C/mm) or (m.p. (°C))	n ^t _D	NMR, δ (60 MHz (CCI ₄ -TMS))
$ \begin{array}{c} Et \\ Bu \end{array} C=C \\ H $ (I)	134/12	1.4695 (<i>t</i> = 20)	1.05 m (6H); 1.40 m (4H) 2.18 m (2H); 2.62 q (2H) 5.57 s (1H); 12.14 s (1H)
Et Me C=C H	35.5 (36.5, lit. ⁶ ; 22–24, lit. ⁷)		1.06 t (3H): 1.90 s (3H) 2.62 q (2H) ^{<i>a</i>} ; 5.60 s (1H) 12.38 s (1H)
(II)			
$H_A C=C H_B$	87/13 lit. ⁸ 88/15 lit. ⁹ 39-41/0.4	1.4490 (t = 20) lit. ⁸ 1.4480 (t = 21) lit. ⁹ 1.4473 (t = 25)	1.06 t (3H); 2.65 m (2H) 5.69 d of t (H _B); 6.30 d of t (H _A) $J(H_A-H_B)$ 12 Hz; $J(CH_2-H_A)$ 1.5 H $\Delta H_A-\Delta H_B$ 0.61 ^b ppm

 $\overline{a}_{5}(CH_{3}-CH_{2}-C\equiv)$ 2.56 (100 MHz, $C_{6}D_{6}-TMS$) as stated by ref. 7.

^b As for cis crotonic acid $\Delta H_A - \Delta H_B$ (cis) 0.66 (ref. 10) while for trans crotonic acid $\Delta H_A - \Delta H_B$ (trans) 1.21 ppm.

Isocyanates can also be inserted into a vinylcopper reagent to obtain amides

EtCu,MgBr₂ $\xrightarrow{(1) \text{ Ether,BuC=CH}}_{(2) \text{ HMPT,1/10 P(OEt),}} \xrightarrow{\text{Et}}_{(3) \text{ O=C=N-Ph}} \xrightarrow{\text{Et}}_{\text{Bu}} C=C \xrightarrow{\text{CONHPh}}_{\text{H}}$

IV (50%)

(IV): b.p. $151^{\circ}/0.01 \text{ mm}$, m.p. 46° , NMR (100 MHz (CCl₄ –TMS)) δ 1.02 m (6H); 1.28 m (4H); 2.00 m (2H); 2.66 q (2H); 5.80 s (1H); 7.04 (3H:Ph); 7.60 (2H:Ph); 9.16 (1H:NH);

Our study of the various functionalizations of vinylcopper reagents is being continued.

ACKNOWLEDGEMENTS

We thank the DGRST and the CNRS for their financial support.

REFERENCES

1 R.J. De Pasquale and C. Tamborski, J. Org. Chem., 34 (1969) 1736.

2 A.M. Yashita and A. Yamamoto, J. Organometal. Chem., 49 (1973) C57.

3 G. Dubot, D. Mansuy, S. Lecolier and J.F. Normant, J. Organometal. Chem., 42 (1972) C105.

- 4 C.D.M. Beverwijk and G.J.M. Van der Kerk, J. Organometal. Chem., 49 (1973) C59.
- 5 J. Normant and M. Bourgain, Tetrahedron Letters, (1971) 2583.
- 6 R.B. Wagner and J.A. Moore, J. Amer. Chem. Soc., 72 (1950) 974.
- 7 T.A. Dobson and L.C. Vining, Can. J. Chem., 46 (1968) 3007.
- 8 M. Bourguel, C.R. Acad. Sci., 188 (1929) 1494.
- 9 C. Rappe and R. Adström, Acta Chem. Scand., 19 (1965) 383.
- 10 V.J. Kowalewski and D.G. de Kowalewski, J. Chem. Phys., 33 (1960) 1794.
- 11 J. Kennedy, M.J. McCorkindale, R.A. Raphael, W.T. Scott and B. Zwanenburg, Proc. Chem. Soc; (1964) 148.